系统粉 > IT资讯 > 业界资讯

艾伦人工智能研究院推出PyTorch上的NLP库|附paper+demo

发布时间:2017-09-09    浏览数:

李林 编译整理

量子位 出品 | 公众号 QbitAI

艾伦人工智能研究院推出PyTorch上的NLP库|附paper+demo(1)

微软联合创始人保罗·艾伦建立的艾伦人工智能研究院(AI2)今天发布了一个PyTorch上的开源自然语言处理(NLP)研究库:AllenNLP。

这个库提供灵活的数据API,能实现智能的batching和padding,对文本处理中的常见操作进行高层抽象,还提供了一个模块化、可扩展的实验框架。

艾伦人工智能研究院推出PyTorch上的NLP库|附paper+demo(2)

AllenNLP包含3个模型:机器理解、语义角色标注和文本蕴含。

其中,机器阅读理解(MC)模型能够从一段文本中选择一段,来回答自然语言问题。AllenNLP中的MC模型是Seo et al, 2017论文提出的BiDAF(双向注意流)的实现。AllenNLP的BiDAF模型在SQuAD数据集上测试的EM成绩是68.7,略好于原始BiDAF模型的67.7分,训练速度也是原来的10倍。

语义角色标注(SRL)模型能从一个句子中还原出它的潜在谓词参数结构,还能为回答“谁”对“谁”做了“什么”这类关于句子含义的基本问题而建立表示。AllenNLP的SRL模型是He et al, 2017论文提出的deep BiLSTM的实现,性能与原文的模型相当,在CoNLL 2012上的F1得分为78.9。

当处理一对句子的时候,文本蕴含(TE)模型能预测第一个句子中的事实是否隐含了第二个句子中的事实。AllenNLP的TE模型是Parikh et al, 2017论文中可分解注意模型的实现,在SNLI数据集上达到了84.7的准确率,接近原始模型86.3%的成绩。

艾伦人工智能研究院推出PyTorch上的NLP库|附paper+demo(3)

AllenNLP由AI2与华盛顿大学等高校的研究者合作开发和维护。

关于这个库的更多信息,以及文中提到的3个模型,见以下链接:

AllenNLP主页:http://allennlp.org/

论文:http://allennlp.org/papers/AllenNLP_white_paper.pdf

GitHub地址:https://github.com/allenai/allennlp

Demo:http://demo.allennlp.org/

安装指南:http://allennlp.org/tutorials/installation

机器阅读理解模型 - BiDAF (Seo et al, 2017):

https://www.semanticscholar.org/paper/Bidirectional-Attention-Flow-for-Machine-Comprehen-Seo-Kembhavi/007ab5528b3bd310a80d553cccad4b78dc496b02

语义角色标注模型 - deep BiLSTM model (He et al, 2017):

https://homes.cs.washington.edu/~luheng/files/acl2017_hllz.pdf

文本蕴含模型 - 可分解注意模型(Parikh et al, 2017):

https://www.semanticscholar.org/paper/A-Decomposable-Attention-Model-for-Natural-Languag-Parikh-T%C3%A4ckstr%C3%B6m/07a9478e87a8304fc3267fa16e83e9f3bbd98b27

— 完 —

诚挚招聘

量子位正在招募编辑/记者,工作地点在北京中关村。期待有才气、有热情的同学加入我们!相关细节,请在量子位公众号(QbitAI)对话界面,回复“招聘”两个字。

量子位 QbitAI

վ'ᴗ' ի 追踪AI技术和产品新动态

上一篇:哈曼品质+开放智能语音,三星智能音箱走“拿来主义” 下一篇:00后CEO的故事,号称员工300人最小11岁,从不发工资

相关资讯

最新热门应用

电脑问答