微软在5月推出由微软研究院开发、发展了十年的机器学习框架ML.NET,今推出了ML.NET 0.5,最大的更新便是开始支持TensorFlow,开发者可以在ML.NET中直接使用已经训练好的TensorFlow模型,进行评分(Scoring)。另外,微软正在开发新的ML.NET API,届时将会弃用现行的LearningPipeline API。

适逢.NET Conf 2018,微软顺势推出ML.NET 0.5,距离5月推出的ML.NET 0.1已经距离一段时间,这次带来巨大的更新,微软在ML.NET 0.5中,增加了TensorFlow模型评分转换(TensorFlow Transform)。微软提到,深度学习是人工智能和机器学习的子集,能够透过实例来学习人类自然习得的能力,与传统机器学习相比,深度学习可以直接从图像、声音以及文本中,学习物件侦测或是分类任务,甚至可以提供语音辨识以及语言翻译等功能,但传统的机器学习依赖特征工程以及资料处理。

深度学习模型需要大量标记资料以及多层类神经网路进行训练,微软认为,深度学习之所以会开始流行,除了对于电脑视觉任务表现良好外,刚好适用于现今资料爆炸情况。微软也想让ML.NET支持深度学习,因此透过新的TensorFlowTransform,在ML.NET中与TensorFlow进行第一阶段的整合,开发者可以自己训练或是从任何地方下载TensorFlow模型,在ML.NET中使用进行结果预测。
微软表示,这种整合方式,让开发者不需要具备TensorFlow内部细节知识,另外,从长远来看,使用ML.NET开发深度学习应用将更加容易。开发者只要增加ML.NET NuGet套件参照,到.NET Core或.NET Framework应用程序中就可以了。在ML.NET底层也是参照了原生TensorFlow函数库,让开发者可以撰写载入TensorFlow模型的代码,并且进行评分。

不过,由于现在ML.NET使用TensorFlow仍然有一些限制,微软正在更新API以提高整体灵活性。目前使用LearningPipeline API时,只能在LearningPipeline中作为数字和向量输入,给分类器学习器(Classifier Learner)等学习器。但在即将要推出的全新ML.NET API,将能存取TensorFlow模型的分数,开发者可以直接使用TensorFlow模型进行评分,不像现在,还需要增加额外的学习器相关的训练程序。届时当新的API推出时,现行的LearningPipeline API将被弃用。
微软提到,虽然现在ML.NET框架支持了TensorFlow,未来也不排除整合其他诸如Torch和CNTK深度学习函数库。
相关资讯
最新热门应用
非小号交易平台官网安卓版
其它软件292.97MB
下载
币交易所地址
其它软件274.98M
下载
iotx交易所app
其它软件14.54 MB
下载
zt交易所安卓最新版
其它软件273.2 MB
下载
币拓交易所bittok
其它软件288.1 MB
下载
u币交易所平台app
其它软件292.97MB
下载
热币全球交易所app官网版
其它软件287.27 MB
下载
多比交易平台app
其它软件28.28MB
下载
币赢交易所app官网安卓版
其它软件14.78MB
下载
toncoin币交易所安卓版
其它软件48MB
下载