机器之心编译
参与:李亚洲、Smith
近日,斯坦福大学、微软联合发表了一篇论文,提出了一种在机器理解(MC)中使用 2-阶段合成网络(SynNet) 进行迁移学习的技术。论文作者之一、前微软人工智能首席科学家邓力已经离职,加入对冲基金巨头 Citadel。
我们开发了一种在机器理解(MC)中使用一个全新的 2-阶段合成网络(SynNet) 进行迁移学习的技术。在某个领域中给定一个高性能 MC,我们的技术旨在回答有关另一领域文档的问题,其中我们使用的是无标记数据问答对。不使用提供的注释的情况下,在 SQuAN 数据集预训练的模型上使用我们提出的 SynNet,能够在 NewsQA 数据集挑战赛上取得 46.6% 的 F1 测量结果,接近领域内(in-domain) 模型的表现(F1 结果为 50.0%),超过域外(out-domain) 基线 7.6%。
图 1:2-阶段 SynNet 的图释。给定段落的情况下,训练 SynNet 的目的是对问题与答案进行合成。模型的第一阶段是一个答案合成模块,使用一个双向 LSTM 在输入段落上预测 IOB 标签,标记出可能是答案的关键语义概念。第二个阶段是一个问题合成模块,使用一个单向 LSTM 来生成问题,同时顾及段落中词汇与 IOB id 的嵌入。尽管段落中的多个跨度(span) 可以被认为是潜在答案,但我们只选择了一个 span 来生成问题。
表 1:随机采样的段落和对应的来自 NewsAQ 训练集的合成问题与人类问题的对比。
表 2:主要结果。使用我们的 SynNet 精调的 BIDAF 模型在 NewsQA 测试集上的精度匹配(EM)和 span F1 结果。
表 3:NewsQA 到 SQuAD。在 SQuAD 上开发的一系列 NewsQA BIDAF 模型与使用由 2-阶段 SynNet 生成的数据精调的模型的 EM 和 span F1 结果对比。
表 4:Ablations Studies。使用一个 2-阶段 SynNet 精调的 BIDAF 模型在 NewsQA 测试集上的精确匹配和跨距 F1 结果。
图 2:在 SQuAD(黄色)上训练的 BIDAF 模型基准的 NewsQA 准确率对比使用我们方法精调的模型对比在 NewsQA 上从头开始训练的一个模型(深蓝)。
相关资讯
最新热门应用
非小号交易平台官网安卓版
其它软件292.97MB
下载币交易所地址
其它软件274.98M
下载iotx交易所app
其它软件14.54 MB
下载zt交易所安卓最新版
其它软件273.2 MB
下载币拓交易所bittok
其它软件288.1 MB
下载u币交易所平台app
其它软件292.97MB
下载热币全球交易所app官网版
其它软件287.27 MB
下载多比交易平台app
其它软件28.28MB
下载币赢交易所app官网安卓版
其它软件14.78MB
下载toncoin币交易所安卓版
其它软件48MB
下载