2月9日,纽约时报英文网站发表一篇文章,指出如今非常热门的AI应用人脸识别,针对不同种族的准确率差异巨大。其中,针对黑人女性的错误率高达21%-35%,而针对白人男性的错误率则低于1%。
文章引用了MIT媒体实验室(MIT Media Lab)研究员Joy Buolamwini与来自微软的科学家Timnit Gebru合作的一篇研究论文《性别图谱:商用性别分类技术中的种族准确率差异》(Gender Shades: Intersectional Accuracy Disparitiesin Commercia lGender Classification)中的数据。
论文作者选择了微软、IBM和旷视(Face++)三家的人脸识别API,对它们进行性别判定的人脸识别功能测试。

在一组385张照片中,白人男性的识别误差最高只有1%

在一组271张照片中,肤色较黑的女性识别误差率高达35% 图源:纽约时报,JoyBuolamwini,M.I.T.MediaLab
论文研究使用了自行收集的一组名为Pilot Parliaments Benchmark(PPB)数据集进行测试,里面包含1270张人脸,分别来自三个非洲国家和三个欧洲国家。
在判断照片人物性别方面,以下是论文作者测试后得到的关键发现:
- 所有的分类器在识别男性人脸上的表现要优于女性人脸(8.1%-20.6%的错误差别)
-?所有分类器在肤色较白的人脸上表现优于肤色较深的人脸(11.8%-19.2%的错误差别)
-?所有分类器在肤色较深的女性人脸上表现最差(错误率在20.8%-34.7%之间)
- 微软和IBM的分类器在浅肤色男性人脸上表现最好(错误率分别为0%及0.3%)
- Face++的分类器在肤色较深的男性人脸上表现最好(错误率0.7%)
-?最差的一组与最好的一组差距高达34.4%
需要指出的是,三家人脸识别API都没有很细节地解释自己所使用的分类方法,也没有提及自己所使用的训练数据。
不过,微软在服务中表明“不一定每次都有100%的准确率”;Face++则特别在使用条款中表明对准确性不予保证。
关于可能的原因,时报文章表示,当下的人工智能是数据为王,数据的好坏和多少会影响AI的智能程度。因而,如果用来训练AI模型的数据集中,白人男性的数据多于黑人女性,那么系统对后者的识别能力就会不如前者。
现有的数据集中存在这一现象,比如根据另一项研究的发现,一个被广泛使用的人脸识别数据集中,75%都是男性,同时80%是白人。
旷视回应表示,深色人种数据集比较难获得,所以会差一些;另外,使用RGB摄像头进行人脸识别时,深肤色人的人脸特征比较难找,特别是在暗光条件下,这也是一方面的原因。
IBM回应:论文用的版本太老,新版已改善
针对Buolamwini和Gebru的这一论文发现,2月6日,IBM在自家的IBM Research博客上发表了一篇回应文章。
文章并未否认论文的发现,而是指出,IBM的Watson Visual Recognition服务一直在持续改善,在最新的将于2月23日推出的新版服务中,使用了相比论文中更广泛的数据集,拥有强大的识别能力,相比论文中的错误率有近10倍的下降。
随后文章中表示IBM Research用类似论文中的方法进行了实验,发现如下:

结果显示整体的错误率都很低,虽然肤色较黑的女性的错误率仍然是所有人群中最高的,但相比论文的结果有很大下降。
旷视回应:深肤色人种识别错误率高是普遍现象,在商用产品中会改善
针对这篇论文向旷视寻求回应,对方给予了非常详细的解答。
回应中,旷视首先对论文的研究方法表示认可,但同时指出研究所用的线上API是较旧的版本,在商用的产品中不会出现这类问题;而且,此类问题也是业内普遍存在的,不仅限于测试的这三家。
原因主要有两点,一是深色人种数据集的缺乏,二是深色人种人脸特征较难提取。
以下为回应全文:
我们相信文章(论文)立意不是针对哪一家的技术,基本是不吹不黑的中立态度,而且从文章的测试方法来看还是比较科学的,但是文章中所用的“PPB”(?Pilot Parliaments Benchmark)数据集在GitHub的发布地址已经失效,所以我们目前无法自行检测以验证文章的结论。
在集成到Face++API中的时候,旷视研究院有针对不同人种进行检测、识别等测试。但是就目前国际范围内的研究水平来说,不管是在学界还是产业界,对于肤色人种的识别表现都没有对“肤色较浅(引用文章用词)”人种优秀,从此文的测试结果中也可以看出,微软、IBM和Face++在肤色较深人种识别的表现中(尤其是肤色较深女性)机器的误实率会更高。
一方面从人类基因和人脸识别技术角度来说,皮肤的颜色越深对于基于RGB可见光的人脸识别的难度就越大,因为机器在进行人脸检测、分析和识别的过程中需要对人脸图像进行预处理和特征提取,所以皮肤颜色越深,面部的特征信息就越难提取,尤其是在一些暗光情况下,更加难以检测和区分。
另一方面,人脸识别很大程度上依赖于数据训练,而在整个行业中黑色人种的可训练数据量较少,所以识别的结果在某些程度上不尽人意,所以文章呈现的测试结果是行业普遍存在的现象。文章中只是选取了三家行业代表来进行了测试,如果样本量足够大,那可能还会得出其他的结论。
不过测试结果也显示,Face++对于黑人男性的识别错误率(0.7%)是最低的,且在PPB的南非子测试集中,Face++识别肤色较浅人种的表现是完美无瑕的,这些其实也间接说明Face++的人脸识别能力是处于全球领先的地位。
文章作者提出了一个很好的问题,但文章中测试的API线上版本和我们为用户提供的商业版本无关,用户在业务使用中不会有任何影响。
当然我们也相信行业内都在针对人种识别优化做着各种努力。而就Face++来讲,未来研究院会从几个角度去改善目前的状况,如增加训练数据,针对不同人种进行专门训练,另外是从算法层面优化现在的流程,提升对不同人种的识别性能,此外,旷视也在加大3D感知的研发力度,将三维特征信息融合到应用中弥补二维信息的不足使模型更加鲁棒。
AI真的有歧视吗?
根据时报的报道,论文的作者之一黑人女性Buolamwini做这项研究之前,曾遇到过人脸识别无法识别她的脸,只有在她戴上一张白色面具时才行,因而引发了她开启这项研究。很明显,这项研究试图探讨AI时代是否存在社会不公甚至种族歧视的问题。
种族歧视作为一个非常敏感的话题,许多事情只要有些微沾上点边就会引发强烈反弹。在人脸识别这块,无论是论文作者的研究,还是厂商的实验都明确发现女性深色人种识别误差率更高。但这就能代表AI存有歧视吗?
显然并不是,细究其中的原因,之所以肤色较深女性较难识别,除了有天然人脸特征更难提取之外,还有可供训练的数据集较少的原因。
而从市场的角度来说,IBM和微软的服务在白人男性中表现最好,是因为其市场主要在欧美,而那里白人占多数;旷视的主要市场在东亚和东南亚,因而其在黄种人当中的表现会好很多,这跟歧视没有关系,而是市场导向的技术研发。
话又说回来,这篇论文确实显示,AI的智能性跟训练数据有很大关系,因而在设计AI应用时,我们应该尽量使用广泛且代表性强的数据,照顾到不同的人群;同时要积极对公众解释AI的实现原理。
这件事同时表明,鼓励新技术的发展惠及更多少数族裔是一件需要更多重视的事情,不仅仅是人脸识别,还有语言、文化等各方面。
编辑:齐少恒
相关资讯
最新热门应用
非小号交易平台官网安卓版
其它软件292.97MB
下载
币交易所地址
其它软件274.98M
下载
iotx交易所app
其它软件14.54 MB
下载
zt交易所安卓最新版
其它软件273.2 MB
下载
币拓交易所bittok
其它软件288.1 MB
下载
u币交易所平台app
其它软件292.97MB
下载
热币全球交易所app官网版
其它软件287.27 MB
下载
多比交易平台app
其它软件28.28MB
下载
币赢交易所app官网安卓版
其它软件14.78MB
下载
toncoin币交易所安卓版
其它软件48MB
下载