没有科技能抗拒客制化的吸引力,当然人工智慧(AI)也不例外。微软(Microsoft)便是看准这点,决定在其人工智慧平台Project Brainwave采用FPGA架构,希望能借由FPGA所提供的编程能力,打造出延迟更低、更强大,且更有利于扩充的人工智慧解决方案,并与Google、NVIDIA等对手的专用产品做出区隔。
根据Design News报导,为发展资料中心业务与Bing等服务,微软的FPGA架构部署已相当完备,微软的深度学习演算法也因此能以云端服务的形式提供给客户,而不需透过专用的硬体。
随着即时人工智慧应用需求不断提升,系统对于性能、能源效率、以及延迟也有更高的要求。自驾车、虚拟助理、智慧保全等系统都需有瞬间反应的能力,而且还要能够方便调整。
微软工程师Doug Burger表示,硬化晶片尽管在执行深度神经网路(DDN)处理时,可提供相当高的峰值性能,但却缺少弹性。Project Brainwave能视资料类型的不同,提供最合适的系统设计。这样的设计结合了ASIC数位讯号处理区块以及可合成逻辑(synthesizablelogic),因此可提供更大量的功能单元,系统的性能与可升级能力也能借此提升。
Project Brainwave除能支援微软自家的Cognitive Toolkit,也能与Google TensorFlow等常见的深度学习框架相容。
微软首次发表Project Brainwave平台时,使用的是英特尔(Intel)的Stratix 10 FPGA。Stratix 10运算效能可达39.5 TFLOPS,延迟则不到1毫秒。在Stratix 10的推动下,Brainwave架构每隔10周期就会发出一个巨集指令,而每周期可执行超过13万个运算作业。经过微软后续的微调后,Brainwave的性能还可望进一步获得提升。
微软计划透过Azure云端服务推出Project Brainwave。如此一来,Azure的采用率就成了Project Brainwave能否成功的一大关键。
微软以FPGA为基础的人工智慧发展策略,与较早踏入人工智慧领域的Google、NVIDIA相当不同。NVIDIA将原本使用在电脑游戏处理的GPU引进人工智慧应用,并且大获成功。NVIDIA于2017年5月推出的Tesla V100平台,将能为资料中心打造更高效能的深度学习应用。
同一时间,Google也发表了采ASIC架构的TPU处理单元。根据Google研究,TPU的性能表现可同时超越CPU与GPU。
相关资讯
最新热门应用
非小号交易平台官网安卓版
其它软件292.97MB
下载
币交易所地址
其它软件274.98M
下载
iotx交易所app
其它软件14.54 MB
下载
zt交易所安卓最新版
其它软件273.2 MB
下载
币拓交易所bittok
其它软件288.1 MB
下载
u币交易所平台app
其它软件292.97MB
下载
热币全球交易所app官网版
其它软件287.27 MB
下载
多比交易平台app
其它软件28.28MB
下载
币赢交易所app官网安卓版
其它软件14.78MB
下载
toncoin币交易所安卓版
其它软件48MB
下载